
of the nmr spectrum of I. Thus, the chemical shift of protons H_{2-6} in I is very similar to the value for H_{1-7} in tropylium ion. ${ }^{12.13}$ Further, the chemical shift between "inside" and "outside" C_{8} protons in the monohomotropylium ion is well accounted for by a ringcurrent model using a $1.6-\mathrm{A}$ ring radius and a sixelectron induced ring current. Using Framework Molecular Models ${ }^{14 a}$ to estimate distances and the equation of Johnson and Bovey ${ }^{146}$ to calculate chemical shifts due to induced ring currents, one obtains 5-6 ppm for the difference between inside and outside C_{8} protons. This agrees well with the observed ${ }^{3}$ difference of $5.8 \mathrm{ppm} .{ }^{15}$
(12) H. J. Dauben, private communication: L. R. Honnen, Ph.D. Thesis, University of Washington, 1962; chemical shifts are in $\mathrm{H}_{2} \mathrm{SO}_{4}$ solvent.
(13) The same similarity of nmr chemical shifts of H_{2-6} in I and H_{1-7} in V is observed also with the corresponding $\mathrm{Mo}(\mathrm{CO})_{3}$ complexes.

(14) (a) Framework Molecular Orbital Models, Prentice Hall, Inc., Englewood Cliffs, N. J.; (b) C. E. Johnson, Jr., and F. A. Bovey, J. Chem. Phys., 29, 1012 (1958).
(15) Note Added in Proof. Just as the present manuscript was submitted, two pertinent communications by C. E. Keller and R. Pettit appeared (J. Am. Chem. Soc., 88, 604, 606 (1966)). In the first one, these authors report coupling constants for $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$essentially identical with those we reported earlier. ${ }^{3 b}$ Also, they report that the protonation of methyl- and phenylcyclooctatetraene is structurally specific, the 1 -substituted monohomotropylium ions being generated. As regards stereospecificity of these protonations in $\mathrm{D}_{2} \mathrm{SO}_{4}$, these authors observed stereospecificity identical in direction and similar in magnitude with that we report here for the unsubstituted $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$. For this latter protonation of the unsubstituted cyclooctatetraene in $\mathrm{D}_{2} \mathrm{SO}_{4}$, Keller and Pettit still refer to the older report ${ }^{3 / 2}$ of nonstereospecific protonation, apparently still unaware of the "inside-outside" equilibration. This may be an indication that such equilibration is slower with the substituted ions than with $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{+}$itself.
In the second communication, Keller and Pettit object, as we did previously, ${ }^{3 \mathrm{~b}}$ to Deno's representation of the monohomotropylium ion with a conventional cyclopropane ring (N. C. Deno, Progr. Phys. Org. Chem., 2, 148 (1964)). They also deal further with the question of a ring current in $\mathrm{C}_{8} \mathrm{H}_{9}{ }^{+}$. For a series of related structures, with relatively constant geometry, in which the chemical shifts (δ) of the "inside" and "outside" protons vary only because of ring currents, one predicts from the Johnson-Bovey equation ${ }^{14 \mathrm{~b}}$ that δ of the inside proton and δ of the outside one should each vary linearly with the chemical shift difference (Δ) between the two protons, Δ being a measure of the magnitude of the ring current. For seven systems plotted this way, roughly linear plots were observed for inside δ vs. Δ and outside δ os. Δ. However, these roughly linear plots are fortuitous and misleading, since ring currents are not the only factor causing variation in δ. Variation of the charge at C_{8} is also an important factor.
S. Winstein, C. G. Kreiter

Department of Chemistry, University of California Los Angeles, California 90024
J. I. Brauman

Department of Chemistry, Stanford University
Stanford, California
Received February 14, 1966

Cholesteryl Perchlorate from Carbonium Perchlorate Ion-Pair Return ${ }^{1,2}$

Sir:
In the course of further examination of the $\mathrm{HClO}_{4^{-}}$ catalyzed isomerization of i-cholesteryl acetate ${ }^{3 \mathrm{a}} \mathrm{I}$ (i-ROAc) in acetic acid solvent to the thermodynamically favored cholesteryl isomer II (ROAc), we have observed a very instructive example of ion-pair return involving carbonium perchlorate ion pairs. This is described and discussed in the present communication.

The kinetics of the HClO_{4}-catalyzed isomerization of i-ROAc to ROAc, followed polarimetrically, do not obey eq 1 for a reaction first order in added HClO_{4} $\left(\Sigma \mathrm{HClO}_{4}\right)$, and also first order in i-ROAc. As illustrated in Table I, the k_{2} values drift upwards badly

Table I. Summary of Kinetic Results at 25.0°

$(i-\mathrm{ROAc})$, $10^{2} M$	$\left(\Sigma \mathrm{HClO}_{4}\right)$, $10^{4} M$	k_{2}, $\mathrm{mole} \mathrm{sec}^{-1}$	$10^{2} k_{1}$, sec^{-1}
1.99	0.44	$3.7-4.1$	2.9
2.00	1.19	$1.5-3.4$	3.0
2.05	3.36	$1.4-3.7$	2.9
2.02	4.48	$1.4-4.0$	2.9
0.51	1.19	$6.9-15.2$	2.8
0.96	1.19	$2.1-11.3$	2.9
2.00	1.19	$1.5-3.4$	3.0
2.67	1.19	$0.6-2.7$	3.0

in each run and vary widely from run to run. While the isomerization is indeed first order in $\Sigma \mathrm{HClO}_{4}$, it appears to be zero order ${ }^{4}$ in i-ROAc, eq 2 providing a good fit of all the data (Table I).

$$
\begin{gather*}
\text { rate }=k_{2}(i-\mathrm{ROAc})\left(\Sigma \mathrm{HClO}_{4}\right) \tag{1}\\
\text { rate }=k_{1}\left(\Sigma \mathrm{HClO}_{4}\right) \tag{2}
\end{gather*}
$$

The explanation which occurred to us for the peculiar kinetics of isomerization of excess i - ROAc by HClO_{4} is that these two materials tend to be in steady-state equilibrium with a covalent perchlorate, chiefly cholesteryl perchlorate (IV, ROClO_{3}), during the isomerization (eq 3-5). This keeps the prevailing HClO_{4} concentration during a kinetic run down to a small fraction of the added $\Sigma \mathrm{HClO}_{4}$ and inversely proportional to the (i - ROAc), while $\left(\mathrm{ROClO}_{3}\right)$ is essentially equal to ($2 \mathrm{HClO}_{4}$). The kinetics of isomerization of i-ROAc are formulated with the aid of the carbonium perchlorate ion pairs ${ }^{5}$ III which are formed from i-ROAc and undissociated HClO_{4} (rate constant k_{i}) and from
(1) This research was supported by the National Science Foundation and sponsored by the U. S. Army Research Office (Durham).
(2) Reported in part at the Third Caribbean Chemical Symposium, Caracas, Venezuela, Jan 4-9, 1965 [Acta Cient. Venezolana, 15, 244 (1965)], and the Japanese-American Seminar in Physical-Organic Chemistry, Kyoto, Japan, April 6-10, 1965.
(3) (a) S. Winstein and E. Kosower, J. Am. Chem. Soc., 81, 4399 (1959); (b) G. H. Whitham and J. A. F. Wickramasinghe, J. Chem. Soc., 1655 (1964); (c) J. H. Beynon, I. M. Heilbron, and F. S. Spring, ibid., 907 (1936); (d) R. Sneen and A. Ehret, unpublished work.
(4) We are indebted to Professor William Dauben, who first called our attention to the superiority of a zero-order plot for this isomerization.
(5) This representation is employed for simplicity, and no implications are intended as regards exact electronic structure ${ }^{3 s, b}$ of \mathbf{R}^{+}and the variety of ion pairs ${ }^{6}$ involved.
(6) E.g., S. Winstein, P. E. Klinedinst, and G. C. Robinson, J. Am. Chem. Soc., 83, 885 (1961).
ROClO_{3} (rate constant k_{c}) or i - ROClO_{3} (rate constant $k_{\mathrm{c}}{ }^{\prime}$). Of the carbonium perchlorate ion pairs III, some lead to i-ROAc, ROClO_{3}, and $i-\mathrm{ROClO}_{3}$, and a fraction F gives rise irreversibly to ROAc. On this basis, the isomerization rate is given by eq 6 . This may be transformed to (7), which reproduces the firstorder dependence on (SHClO_{4}) and the zero-order dependence on (i-ROAc). On this basis, the k_{1} of eq 2 is $F\left[\left(k_{\mathrm{i}} / K_{\mathrm{m}}^{\mathrm{i}}\right)+k_{\mathrm{c}}+\left(k_{\mathrm{c}}{ }^{\prime} K_{\mathrm{m}}{ }^{\mathrm{i}} / K_{\mathrm{m}}{ }^{\mathrm{i}}\right)\right]$.

$$
\begin{gather*}
i-\mathrm{ROAc}^{2}+\mathrm{HClO}_{4} \stackrel{K_{\mathrm{m}} \mathrm{ii}}{\rightleftharpoons} i-\mathrm{ROClO}_{3}+\mathrm{AcOH} \tag{3}\\
i-\mathrm{ROAc}^{\stackrel{ }{2}+\mathrm{HClO}_{4} \stackrel{K_{\mathrm{m}} \mathrm{i}}{\rightleftharpoons}} \mathrm{ROClO}_{3}+\mathrm{AcOH} \tag{4}\\
K_{\mathrm{m}}^{\mathrm{i}}=\frac{\left(\mathrm{ROClO}_{8}\right)}{(i-\mathrm{ROAc})\left(\mathrm{HClO}_{4}\right)}=c a .2000 \tag{5}
\end{gather*}
$$

rate $=F\left[k_{\mathrm{i}}(i-\mathrm{ROAc})\left(\mathrm{HClO}_{4}\right)+k_{\mathrm{c}}\left(\mathrm{ROClO}_{3}\right)+\right.$
$\left.k_{\mathrm{c}}{ }^{\prime}\left(i-\mathrm{ROClO}_{3}\right)\right]$
rate $=F\left[\left(k_{\mathrm{i}} / K_{\mathrm{m}}{ }^{\mathrm{i}}\right)+k_{\mathrm{c}}+\left(k_{\mathrm{c}}{ }^{\prime} K_{\mathrm{m}}{ }^{\mathrm{i}} / K_{\mathrm{m}}{ }^{\mathrm{i}}\right)\right]\left(\Sigma \mathrm{HClO}_{4}\right)$

$$
\begin{gather*}
\mathrm{ROAc}+\mathrm{HClO}_{4} \stackrel{K_{\mathrm{m}}}{\rightleftharpoons} \mathrm{ROClO}_{3}+\mathrm{AcOH} \tag{8}\\
\mathrm{RX} \stackrel{K_{\mathrm{RX}}}{\rightleftharpoons} i-\mathrm{RX}
\end{gather*}
$$

The substantial diversion of perchloric acid during isomerization of i-ROAc to ROAc can in fact be demonstrated by indicator studies. For example, using p-naphtholbenzein ${ }^{7 a}$ as indicator, it is evident that addition of 0.0108 Mi -ROAc to a $3.45 \times 10^{-4} \mathrm{M}$ HClO_{4} solution reduces the available HClO_{4} concentration initially to $1.70 \times 10^{-5} \mathrm{M}$. Then, as i-ROAc isomerizes, the concentration of available HClO_{4} returns to its original value. A series of such measurements leads to a value of $c a .2000$ for the metathetical equilibrium constant ${ }^{8} K_{\mathrm{m}}{ }^{\text {i }}$.

The present results are instructive in several ways. First of all, the observed substantial carbonium perchlorate ion-pair return is possible because acetic acid is a poorly dissociating solvent for ion pairs. In this solvent, the dissociation constant for HClO_{4} is quite low ${ }^{7}$ and the dissociation constant for $i-\mathrm{ROACH}^{+} \mathrm{ClO}_{4}^{-}$ is also low. This factor favors ionization route a to a carbonium perchlorate ion pair which can collapse to ROClO_{3}, rather than route b to dissociated carbonium ions, which are much less apt to yield ROClO_{3}

[^0]since this would require reassociation with a dissociated ClO_{4}^{-}.

The present carbonium perchlorate ion-pair return is pertinent to the question of the general behavior ${ }^{6}$ of carbonium perchlorate ion pairs which are involved in the "special salt effect" of a perchlorate salt (e.g., LiClO_{4}) in reducing ion-pair return during acetolysis of a substrate such as 3-anisyl-2-butyl bromobenzenesulfonate. We previously inquired ${ }^{6}$ whether the components of the carbonium perchlorate ion pairs ever interact to the point of giving covalent perchlorate. However, as long as covalent perchlorate is extremely reactive relative to the solvolyzing substrate, none of the features of the kinetics of the special salt effect are affected by such carbonium perchlorate ion-pair return. ${ }^{6}$ In this context, the present work provides an actual example of carbonium perchlorate ion-pair return to covalent perchlorate.

The reason for substantial formation of ROClO_{3} from i-ROAc, and not from ROAc, is the much greater free energy of i-ROAc relative to ROAc. Thus, during isomerization of i-ROAc to ROAc, the steadystate equilibrium (4), involving conversion of i-ROAc to ROClO_{3}, tends to be maintained. With the ratio of $\left(\mathrm{ROClO}_{3}\right)$ to (i-ROAc) controlled by eq 5 , cholesteryl perchlorate is produced and temporarily maintained in amounts greatly exceeding the thermodynamic equilibrium proportions relative to cholesteryl acetate and perchloric acid. When isomerization of i-ROAc is complete, the concentration of cholesteryl acetate exceeds (i-ROAc) by a factor of $c a .10^{6.4}$, since the K_{RX} for equilibrium 9 between cholesteryl and i cholesteryl derivatives ${ }^{3 a}$ is $c a .10^{6.4}$. Now, the equilibrium proportions of ROClO_{3} are controlled by equilibrium 8 between ROClO_{3} and ROAc and HClO_{4}. The pertinent equilibrium constant K_{m} may be estimated to be of the order of 10^{-3}, namely, ($K_{\mathrm{m}}^{\mathrm{i}} / K_{\mathrm{RX}}$). Therefore, the equilibrium ratio of (ROClO$)_{3}$ to (ROAc) is very small. For example, it is estimated to be ca. 10^{-5} when $\left(\mathrm{HClO}_{4}\right)$ is 0.01 M .

In the case of isolable materials such as ROTs or RCl , there are many illustrations of this same point where such products are obtained from HX and a highenergy isomeric acetate ${ }^{3 \mathrm{~d}}$ or alcohol, ${ }^{3 c} \mathrm{R}^{\prime} \mathrm{OAc}$ or $\mathrm{R}^{\prime} \mathrm{OH}$, but not the low-energy isomers, ROAc or ROH. A very interesting recent example concerns the isomeric dibenzocyclooctatrienyl ($\mathrm{R}^{\prime} \mathrm{X}$) and dibenzocycloheptatrienylmethyl (RX) systems. ${ }^{9}$ Treatment with HOTs in AcOH leads to ROTs from R'OAc but not from ROAc. ${ }^{9}$
(9) E. Ciorǎnescu, A. Bucur, M. Elian, M. Banciu, M. Voicu, and C. D. Nenitzescu, Tetrahedron Letters, No. 51, 3835 (1964); Reo. Roumaine Chim., 10, 161 (1965).

Anne Ehret, S. Winstein
Contribution No. 1920 from the Department of Chemistry University of California, Los Angeles, California 90024

Received March 5, 1966

[^0]: (7) (a) I. M. Kolthoff and S. Bruckenstein, J. Am. Chem. Soc., 78, 1 (1956); (b) S. Bruckenstein and I. M. Kolthoff, ibid., 78, 2974 (1956); (c) T. L. Smith and J. H. Elliot, ibid., 75, 3566 (1953).
 (8) The values of $K_{\mathrm{m}}{ }^{i}$ drift somewhat with variations in the concentrations of i-ROAc and $\mathrm{\Sigma HClO}_{4}$, due at least in part to partial dissociation of the free HClO_{4}. A fuller account will be published elsewhere.

